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ABSTRACT 
SRI International is currently involved in the development of a new 
generation of software systems for automatic scoring of 
pronunciation as part of the Voice Interactive Language Training 
System (VETS) project. This paper describes the goals of the 
VlLTS system, the speech corpus, and the algorithm development. 
The automatic grading system uses SRI’S Decipherm continuous 
speech recognition system [l] to generate phonetic segmentations 
that are used to produce pronunciation scores at the end of each 
lesson. The scores produced by the system are similar to those of 
expert human listeners. Unlike previous approaches in which 
models were built for specific sentences or phrases, we present a 
new family of algorithms designed to perform well even when 
knowledge of the exact text to be used is not available. 

1. INTRODUCTION 
Computer-aided language instruction has been evolving from 
simple systems with exercises based on text and static pictures to 
more advanced systems that accept user input text or pointing, and 
may also involve speech output. More recently, the possibility of 
accepting speech input began to become practical. The addition of 
speech input allows developers to complement reading and 
listening comprehension (receptive skills) with more active 
activities of production and conversation. In these systems, the 
computer may provide some feedback of the kind that an insmctor 
would produce, such as an assessment of the quality of 
pronunciation or pointing to specific production problems or 
mistakes. Speech recognition technology is key in allowing such 
feedback. However, standard speech recognition algorithms were 
not designed with the goal of speech quality assessment; therefore, 
new methods and algorithms must be devised to match the 
perceptual capabilities of human listeners to grade speech quality. 

Previous work at SRI [2,3,4] used speech recognition technology 
to score the pronunciation of Japanese students speakmg English 
over the telephone based on fixed text prompts. Knowledge of the 
text can be used to compute robust pronunciation scoring 
algorithms, but limits generaiizability, since new lessons will 
require additional data collection. We refer to this class of 
algorithms as zexr-&pen&nt because they rely on statistics related 
to specific words, phrases, or sentences. Measures related to the 
likelihood of segmental spectral features and duration were found to 
correlate very well with human ratings. 

Recently SRI started development of the VILTS project [5] to 
incorporate spoken language technology in a system geared toward 
training foreign language students. The first version of the system 
was designed to teach French to students whose first language is 
American English. The system elicits speech through various 
language instruction activities designed to ensure that the 
recognizer produces a correct transcription of the recordings 99% of 
the time. This transcription is used to produce an accurate phonetic 
segmentation used by the system to produce pronunciation scores 
that correlate well with those of expert human listeners. 

The VaTS software is designed to be extensible and flexible; 
language instructors should be able to modify and design lessons 
without expert knowledge -in speech recognition technology. To 
achieve this goal, we developed text-independent pronunciation 
scoring algorithms. To develop the algorithms, an extensive speech 
corpus was designed and collected. 

2. THE VETS CORPUS 
The VILTS project required data for speech recognition, for 
pronunciation algorithm development, and to provide core lesson 
material. Speech was recorded from 100 natives of French living in 
Paris, strong regional accents were avoided. We refer to this data as 
the Mtive corpus. The nunndve corpus was recorded from 100 
American students speaking French. The speech was recorded in 
quiet offices using a highquality Sennheiser microphone. The 
natives were recorded in four modes: 

Read speech, common sentences, designed to 
include most common pronunciation problems for 
American students; 

Read speech, newspaper sentences, which were not 
read within the native speaker corpus by more than 
one speaker; 

Spontaneous conversations between a subject and 
an interviewc. and 

Read speech versions of the conversation 
transcripts by the same speakers. 

The nonnative corpus consisted of: 
Read speech, common sentences (same Sentences 
used in the native corpus); 

Read speech, newspaper sentences; and 
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Readimitated speech, in which the subject was able 
to listen to a native reading the same sentence 
before starting the recording. 

Five French teachers, certified language testers, rated the overall 
pronunciation of each nonnative sentence on a scale of 1 to 5, 
ranging from unintelligible to native quality. About 10% of the data 
was rated by all five teachers and twice by each teacher. Multiple 
ratings of the same utterance were used to evaluate inter- and intra- 
correlations among the raters. 

Pronunciations for French words used in the corpus were generated 
by a text-to-speech system and revised by a linguist. 37 phonemes 
were used, and each word could have multiple pronunciations 
(French liaison was modeled using multiple pronunciations). 

' 

score 
% 

3. PRONUNCIATION SCORING 

1 2 3 4 5 

9 31 42 15 3 

Human scores are the reference against which the performance of 
the scoring systems is validated. For this reason it is important to 
asses the consistency of human scores, both between raters and 
within each rater. To measure human consistency and to evaluate 
automatic scores we use simple linear correlation techniques. 

Rater ID 
Mean 

Std. Dev. 

3.1. Human Scoring 

1 2 3 4 5 AV& 
2.5 2.7 3.0 2.5 3.0 2.7 
0.8 I 0.8 0.9 0.9 1.1 1 0.9 

Human judgments were provided by the five raters of speech from 
the 100 students. Using the subset of sentences scored by all raters, 
we assessed inter-rater correlation based on individual sentence 
scores and on individual speaken (Table 1). 

Sentence Type 
P 

Newspaper Sentences Imitated 
Common Sentences Read 

Table 1: SentencdSpcaker-level correlations between raters 

M m  -- 
2.7 
2.8 

The level of correlation is reasonably uniform among the pairs of 
raters. The correlations at the speaker level are consistently higher 
than those at the sentence level, reflecting that the average scores 
based on several sentences are more reliable than the scores based 
on single sentences. The average correlation between raters at the 
sentence level is 0.65 while at the speaker level it reaches 0.8. We 
also computed the correlation between a rater and the mean of all 
other raters excluding the c m t  one. Table 2 shows th is  type of 
correlation at the sentence level and speaker level. This way of 
assessing the correlation among raters at the speaker level is similar 
to the way the machine scores will be correlated with human scores. 
Correlation between a rater and a pool of other raters also suggests 
an upper bound on the level of correlation between human and 
machine scores. Table 2 also shows the intra-rata correlation, 
assessing the consistency of repeated judgments of the same 
material by the same rater. In panicular, each rater was asked to rate 
the same utterance twice, on different days and in different contexts. 
As we would expect, comparing with Table 1. the intra-rater 

Table 2 Sentence- and speaker-level correlations. Inter-rater cor- 
relations are computed against the average of the other raters. 
Intra-rater correlations are computed using two ratings of the same 
utterance by the same rater. 

correlation is higher than the average of pair-wise inter-rater 
correlation (0.651, reaching an average of 0.76. 

Descriptive statistics were-obtained over the whole set of almost 
20,000 human scores of nonnative data from 100 speakers. The 
histogram of the scores, using a scale from 1 to 5 described earlier, 
from all raters for all sentence types is shown in Table 3. 

Table 3: Histogram of scores across all sentence types and raters. 

We note a smaller number of level4 ratings, consistent with the fact 
that these are ratings for nonnatives. The maximum of the 
distribucion is for the score 3, and shows a significant asymmetry 
toward lower scores. In Table 4, the mean and standard deviation of 
the scores given by each rater are shown. The means differ at most 
by a half point, and the standard deviations are reasonably similar. 

I I I I I I I I 
Table 4: Means and standard deviations of scores from each rater. 

Table5 shows the average scores for each sentence type- The 
average score correlates well with the level of difficulty of the task 
(read sentences are more difficult than imitated sentences, and 
newspaper sentences more difficult than common sentences). 

I 

Newspaper Sentences Read I 2.5 

Table 5: Means of scores for each sentence type. 
I 

3.2. Automatic Scoring 
We developed various pronunciation scoring algorithms that rely on 
phonetic time alignments produced by SRI'S speech recognition 
system. To generate the alignments, we must recover the text read 
by the student. We do this by eliciting speech in a constrained way 
in the language learning activities. The algorithms were designed 
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according to the following objectives: (1) machine scores must 
correlate well with human expert listener scores and (2) no statistics 
of specific phrases or sentences should be used (i.e., the algorithms 

, must be text-independent). Algorithms in four categories were 
investigated: hidden Markov model (HMM) log-likelihood scores, 
segment classification scores, segment duration scores, and timing 
scores. Each of these categories of scores is described below. 

33.1. HMM Log-Likelihood Scores 

In this approach, we use the HMM log-likelihood as scores. The 
underlying assumption is that the logarithm of the likelihood of the 
speech data, computed by the Viterbi algorithm, using the HMMs 
obtained from native speakers is a good measure of the similarity 
between native speech and nonnative speech. For each sentence, the 
phone segmentation is obtained, along with the corresponding log- 
likelihood of each segment. However, for a given level of mismatch 
between speech and models, with the standard assumptions in the 
HMM framework, the log-likelihood depends on the length of the 
sentence. To normalize for the effect of the sentence length we use 
the “global average log-likelihood” score [4], d e h e d  as: 

N 

= ( : l + [ g i )  

where Ii is the log-likelihood corresponding to the ith phone and di 
is its duration in frames, with sums over the number of phones. The 
degree of match during longer phones tends to dominate the global 
log-likelihood score. Although shorter phones may have an 
important perceptual effect, as their duration is smaller, the degree 
of mismatch along them may be swamped by that of longer phones. 
To attempt to compensate for this effect we use the following “local 
average log-likelihood” score L [4], defined as: 

where the variables are defined as above. In this score, the degree of 
match for each phone is weighted equally regardless of its length. 

3.2.2. Segment ciassification Scores 

Another approach to assessing pronunciation is to compute phone 
classification mor, if the phone classifier is h’ained using native 
speakers, then the closer the test speaker is to the training 
population, the higher the classification accuracy should be. We 
implemented a French phone recognizer and used recognition 
accuracy as a pronunciation score. 

323. Segment Duration Scores 

Relative phone duration should correlate well with the human 
expert listener’s scores for psychological and linguistic reasons. 
The cognitive load of thinking about how to articulate can disrupt 
the speech flow and increase disfluency. Cross-language 
differences a nonnative may impose from the native language on the 
language being learned can also affect durations of segments. 
Differences in letter to sound rules for the orthographies of the two 
languages may lead to insertions, deletions or substitutions of 
phones that will result in duration differences. Since, to achieve text 
independence, we cannot use sentence, phrase, or word durations to 

normalize phone durations, we use a measure of rate of speech 
(ROS) as the normalization factor. The simplest approach to ROS is 
to compute the global rate of speech as the average number of 
phones per unit of time for a given speaker. Normalized duration 
can be computed as di = di. ross where di is the UMOrmaliZed 
duration for segment i and ‘os, is the estimated rate of speech for 
speaker s. To compensate for phone alignment errors near silence, 
we investigate the effect of excluding phones in the context of 
silence from the train and test data sets. 

354. Timing scores 

Insofar as nonnative speakers tend to speak more slowly than 
natives, spealung rate should be a good predictor of fluency and can 
be used as a pronunciation score. Other aspects of linguistic timing 
can also be exploited since language leamen tend to impose the 
rhythm of their native language on the language they are learning. 
For example, Enghsh tends to be stress-rimed (stressed syllables 
tend to be lengthened and others shortened), while Spanish and 
French tend to be syllable-timed. In our investigations a distribution 
of normalized syllabic periods is computed between the centers of 
vowels within segments of speech. The normalized time between 
syllables is used to produce a syllabic timing score. 

33. Experimental Results 
To evaluate the pronunciation scoring algorithms, we used a test set 
with an average of 30 common sentences from 100 adult American 
speakers with various levels of proficiency in French. The 
recordings were verified by the human expert listeners at the same 
time that they rated the pronunciations. Listeners were instructed to 
reject utferances in which the audio was contaminated during the 
recording and those in which the student was seriously disfluent, 
stumbled, or had other significant disruptions. A French recognizer 
was trained using SRI’S Decipherw speech recognition system [ 11. 
We used 16,000 utterances from 100 native speakers reading 
newspaper text Phone recognition performance was evaluated 
using 37 phonetic classes with a bigram phone model; phone 
recognition error rate on this task was 20.6%. We report (Table 6). 
correlations between machine and human scores computed at the 
sentence level (across 3000 sentences) and speaker level (across 

To compute native statistics for the pronunciation algorithms and to 
evaluate the correlation between human and machine scores, we 
generated phonetic time alignments for all  the native and nonnative 
data using the Viterbi decoder. 

Both global and local HMM likelihoods are very poor predictors of 
pronunciation ratings. It is not clear why in the global likelihood 
score, correlation decreases when the silence is excluded (A1 vs. 
A2). The opposite effect can be observed for the local likelihood 
scores (A3 vs. A4). Phone classification results in similar 
perfmance at the speaker level but seems to correlate better at the 
sentence level. Segment duration scores produce the best results at 
the speaker level. Normalizing duration helps (C1 vs. C2) and 
should also increase robustness, as the scores become independent 
of the rate of speech. Nonparamemc distributions also improve 
performance compared to the single Gaussian case (C2 vs. (3). 

100 speakers). 
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Sent 

A1 I Globallog-lielihood,withsilence I 0.276 I 0.429 

Spkr 

A2 I Globallog-likelihood,nosilence I 0.182 I 0.313 
A3 

A4 

~~ 

Local log-likelihood, with silence 0.255 0.406 

Local log-likelihood, no silence 0.285 0.481 

Duration(SingleGaussianper I o.463 1 o.735 
phone) 

B1 

Normalized duration (Single 
Gaussian per phone) 1 o-452 I o-827 

Phone recognition 0.399 0.469 

Normalizedduration(Dismte 1 o.453 1 o.845 
distributions) 

D1 

D2 

NormalizeddurationCDiscrete 1 o.410 I o.856 
a I disaibutions, no silence context) 

Global rate of speech 0.408 0.685 

Nonnalized syllabic timing 0.355 0.726 

Table 6: Sentence and speaker level correlations between human 
and machine scores using 100 nonnative speakers and 30 utter- 
ances per speaker. 

This improvement is not surprising since the probability 
distribution of phone duration is not Gaussian. Excluding phones in 
the context of silence produces a small improvement in correlation 
at the speaker level (C4 vs. C3). Sentence-level results are stili poor, 
suggesting that further work is needed to predict pronunciation 
ratings using only a single utterance. 

Finally, the timing scores result in acceptable speaker level 
correlations. Global rate of speech is a good predictor of 
pronunciation rating, confirming that advanced students speak 
faster than beginners. However, this score by itself would be a poor 
indicator of overall pronunciation given that any speech-like signal 
of the right duration could result in high machine scores. Syllabic 
timing, however, should be robust to ROS because the durations are 
normalized and affected only by the relative duration of the timing 
between syllables. 

To evaluare the correlation as a function of the amount of test data, 
we conducted a second experiment. In this case, we used various 
amounts of newspaper text from all 100 nonnative speakers to 
compute the correlations. The results are shown in Table 7. 

Table 7: Speaker-level correlation for various amounts of test sen- 
tences using three different methods 

Clearly, correlations improve as the amount of test data increases. 
At least five sentences appear to be required to produce reasonable 
pronunciation scores. Spectral scores (A41 seem to be more erratic 
than duration (C5) and timing scores 02) .  Duration scores produce 
the best conslation in all cases. 

4. SUMMARY 
We have presented the algorithms being developed to generate 
reliable pronunciation scores. We compared different methods and 
found that those based on normalized duration scores produced the 
best results. This finding indicates that relative phone duration is a 
good predictor of pronunciation proficiency. Moreover, duration 
scores should be more robust to stressed conditions such as 
background noise or limited channel bandwidth than are pure 
spearalscores. 
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